$(PPh_4)_4[Ag_2S_{20}] \cdot S_8$, an Unusual Very Sulfur-Rich Compound

ACHIM MÜLLER, MICHAEL RÖMER, HARTMUT BÖGGE, ERICH KRICKEMEYER, FRIEDRICH-WILHELM BAUMANN and KLAUS SCHMITZ

Faculty of Chemistry, University, D-4800 Bielefeld, F.R.G.

Received April 18, 1984

It is now evident that S_x^{2-} ions are fascinating and versatile ligands from the structural point of view (this is also the case for S_2^{2-} [1]) and that metal aggregates can be 'glued' by these ligands according to their flexible and high number of coordination sites [2-4]. We report here the isolation of $[(S_6)Ag(S_8)Ag(S_6)]^{4-}$ (1), the first complex with an S_8^{2-} ligand. To our knowledge salts containing this discrete ion have not been reported so far.

Red-brown $(PPh_4)_4[(S_6)Ag(S_8)Ag(S_6)] \cdot S_8$ (1a), characterised by an X-ray structure analysis (Table I)

and by its Raman spectrum, can be obtained by the reaction of $AgNO_3$ with a polysulfide solution (for details see Experimental). The disorder of 1 and the S_8 unit in the crystal lattice causes crystallographically a center of inversion.

The binuclear anion (1) has a very interesting structure. It contains two bidentate S_6^{2-} ligands $(d(SS)_{av} = 205.0 \text{ pm})$ and a bridging S_8^{2-} ligand $(d(SS)_{av} = 196.0 \text{ pm})$ (see Fig. 1). The structure and the bond lengths correspond to one component of 1 in the crystal lattice. As a result of the disorder, the S-S distances in the S_8^{2-} bridge are less accurate. The structures of the AgS₆ heterocycles have roughly twisted chair conformation (see [5]) and the structure of the S_6^{2-} group is comparable to the corresponding ones in $[Hg(S_6)_2]^{2-}$ [6]. The Ag atoms in these metallocycles are linked by the S_8^{2-} ligand, causing a trigonal planar coordination of the metal centers (d(AgS)_{av} = 247.1 pm).

Another remarkable feature of 1a, a transition metal compound with one of the highest sulfur contents known so far, is the abundance of S_8 units in the crystal lattice.

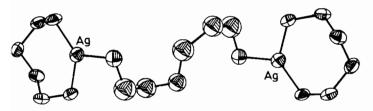


Fig. 1. Structure of 1.

TABLE I. Results of th	e Crystal Structure	Determination for 1a	a.
------------------------	---------------------	----------------------	----

Space group	PĪ
<i>a</i> [pm]	1091.6(4)
<i>b</i> [pm]	1361.5(6)
<i>c</i> [pm]	1937.5(8)
α [°]	86.15(3)
β [°]	83.89(3)
γ [°]	67.97(3)
$V \ [10^6 \text{ pm}^3]$	2653.1
Z	1
Data collection instrument	Syntex P2 ₁
Radiation	$Mo-K\alpha$ (graphite monochromator)
Crystal dimensions [mm]	0.1 imes 0.4 imes 0.4
μ [cm ⁻¹]	9.8
Number of independent reflections $F_0 > 3.92\sigma(F_0)$	4550
$R = \Sigma \ \mathbf{F}_{\mathbf{o}}\ - \mathbf{F}_{\mathbf{c}}\ / \Sigma \mathbf{F}_{\mathbf{o}} $	0.099
$Rw = (\Sigma w (F_0 - F_c)^2 / \Sigma w F_0 ^2)^{1/2}$	0.066

© Elsevier Sequoia/Printed in Switzerland

1a can be easily identified by its Raman spectrum $(\lambda_e = 647.1 \text{ nm})$, showing the most intense bands of the S₈ unit in the lattice (at 472, 218 and 152 cm⁻¹) and bands of 1 with medium intensity (at 490, 454, 442, 411, 394 ($\tilde{\nu}$ (S-S)); 243, 202, 189, 113 cm⁻¹).

Experimental

Preparation of la

A stream of NH_3 was passed through a solution of 2.0 g AgNO₃ in 50 ml CH₃CN for 10 sec. While stirring, this mixture was added to 200 ml of a freshly prepared polysulfide solution (see below). The mixture was heated quickly up to 50 °C and the filtrate kept in a closed beaker at 5 °C in an Ar atmosphere. After about three weeks the red—brown crystals of **1a** were filtered off and washed several times with toluene (to remove the co-precipitated sulfur). Yield: 0.15 g.

Polysulfide Solution

A stream of NH₃ was passed through 200 ml CH₃CN for 20 min. After addition of 5.0 g (PPh₄)-Br and of 2.0 g S₈ a stream of H₂S was passed for $\frac{1}{2}$ min through the mixture (colour change to greenishbrown) and stirred for 1 min.

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, and the Minister für Wissenschaft und Forschung des Landes Nordrhein-Westfalen for financial support.

References

- 1 A. Müller, W. Jaegermann and J. Enemark, Coord. Chem. Rev., 46, 245 (1983).
- 2 A. Müller and E. Diemann, in 'Comprehensive Coordination Chemistry', ed. G. Wilkinson, J. A. McCleverty and R. J. Gillard, Pergamon Press, Oxford, 1985, Vol. 1, Part 2, Chapter 16.1;
 A. Müller, Adv. Inorg. Chem. Radiochem., Vol. 30, to be which educed.
- be published.
 3 A. Müller, M. Römer, H. Bögge, E. Krickemeyer and D. Bergmann, J. Chem. Soc., Chem. Commun., 348 (1984).
- 4 A. Müller, M. Römer, H. Bögge, E. Krickemeyer and K. Schmitz, *Inorg. Chim. Acta*, 85, L39 (1984).
- 5 R. Bucourt, Top. Stereochem., 8, 159 (1974).
- 6 A. Müller, J. Schimanski and U. Schimanski, Angew. Chem., 96, 158 (1984); Angew. Chem., Int. Ed. Engl., 23, 159 (1984).